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COMMENT 

Ground-state tunnel splitting of the methyl group in a 
three-fold potential 

J Petemelj and I JenEiE 
Institut ‘Josef Stefan’, University E Kardelj, Ljubljana, Yugoslavia 

Received 28 November 1988 

Abstract. An approximate value of tunnel splitting of the methyl-group torsional ground 
state is obtained using the traditional methods of wave mechanics. 

The calculation of energy levels of methyl groups in single-particle potentials does not 
present any substantial problem and as such it has been discussed thoroughly in the 
past (Press 1981). It is also generally agreed that approximate methods have little 
practical importance in the case of one-dimensional rotational motion. However, the 
existence of good approximate results is nevertheless useful for further understanding 
of rotational tunnelling. 

Recently Whittall and Gehring (1987) presented an interesting calculation of the 
methyl-group ground-state tunnelling frequency using a path-integral formulation. We 
would like to supplement their derivation by showing how one can obtain the WKB 

equivalent of their result by an almost trivial application of the method described by 
Landau and Lifshitz (1977) for the case of the double well. 

The solution of the Schrodinger equation for a CH3 group in a three-fold potential 
V (  y )  = V3( 1 +cos 3 y ) ,  neglecting the possibility of tunnelling, can be approximated 
with the quasiclassical wavefunction +o( y - 7,) which describes the motion with a 
certain energy Eo localised in a well corresponding to a minimum of the potential 
V (  y )  at y = y,. 40( y - 7,) is exponentially damped on both sides of the well and is 
also assumed to be normalised so that 

Y C + T / 3  

Y c - T / 3  
J d r # i ( r -  rc> = 1. 

When the possibility of tunnelling is taken into account, the three-fold degenerate 
ground state Eo splits into a doubly degenerate level and a non-degenerate ground 
state EA. The subscript A, E,,, Eb are symmetry labels denoting irreducible representa- 
tions of the point group C3. The correct zero-order approximation for the wavefunc- 
tions corresponding to these levels can be written in terms of 40( y - y,) as: 
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where E = 
everywhere (ye#  y;) and the functions I)A and 
unity on the interval [ - x ,  571. The relevant Schrodinger equations are 

and I)Eh = I):,. The product 40( y - yc)40( y - y:) is vanishingly small 
can be taken as normalised to 

and there is a similar equation for I)Eb. J is the moment of inertia of the methyl group 
around its symmetry axis. If we multiply (4) by 40(y-.n/3) and (3) by I)A, and 
subtract the corresponding terms, we obtain after integration over y from 0 to 2x/3,  

where &= dd',/dy. To obtain this result we used 

{02r'3 dY dJo(Y- 57/3)@~(Y)% 1/43 

I)A( y = 0) = @A( y = 2 4 3 )  # 0, I);( y = 0) = I);( y = 2 4 3 )  = 0, and the fact that 
40( y - 7r/3) is an even function with respect to the point y = n/3. By an identical 
manipulation of (3) and ( 5 )  we can also show that 

Subtracting (6) from (7), setting Eo = ihwo,  and using the WKB results given in Landau 
and Lifshitz (1977) for q50( y - ~ / 3 ) 1 , = ~  and its derivative, we can write 

Using the relation w i  = 9 V3/ J and the expression V( y) = V,( 1 +cos 3 y), enables us to 
rewrite (8) as the tunnelling frequency: 

wT= 3 wg exp( -? {oyo dy[$(l +cos 3 y) -4h/  J W ~ ] " ~  
2x 

and yo is determined by 

(9) 

The tunnelling frequency wT calculated with the help of (9) is listed for various values 
of ( Jwo/ h )  in table 1, which also includes values obtained for the 'Gaussian pocket 
state approximation' (Peternelj et al 1987) based on the formula 

UT = 2 W O  exp(-- x 2  2) J w  [ (5 -"> + 1 + . . .I. 
2 9 h  9 9  
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Table 1. Tunnelling frequency +ioo for a methyl group in a three-fold potential 
V3(1 +cos 3y), calculated by different methods 

Gaussian 

Jwol h calculation method state app 
Exact W K B  pocket 

5.55 2.91 x 3.79 x 1.58 x lo-’ 
7.85 5.04 x 1 0 - ~  5.76 x 10-3 1.68 x 10-~ 
11.10 3.53 x 10-~ 3.77 x 10-~ 6.39 x io+ 
13.59 4.36 x 1 0 - ~  4.54 x 10-~ 4.99 x 10-6 
15.70 7.26 x 7.46 x 5.62 x io-’ 

The result (8) can also be derived by the following heuristic argument, advocated 
recently by Dekker (1987) for a double well. Assuming that at t = 0, the methyl group 
is in a pure state Qi(y), the density matrix in the coordinate representation is 

P ( Y ,  7’9 t )  = exp(-iwmnt)cpm(y)cp~(y’)(cpmI+i)(+iIcp,) (12) 
m, n 

where E ,  and cpm are the eigenvalues and eigenfunctions, respectively, of the Hamil- 
tonian 

H=-(A2/2J)(d2/dy2)+ V3( l+cos3y)  

and where w,, = ( E ,  - & ) A ,  and (cp,(+bi)= 14, dycp*,+bi. The probability that the 
methyl group is in the state +f at time t ,  is: 

P,J t )  = ITr d y  dy’ +T(y )p (y ,  Y’, t)+bAy‘). (13) 
- T r  

Choosing +i( y )  = 4 0 ( y +  7/31, + d y )  = 40( y f 7 / 3 )  or bo( y - T), we obtain, con- 
sidering only the lowest three eigenstates ( 1 )  and (2) in the sum (12), 

P(-.rr/3lt) = 1 - $  sin2(iwTt) 

and 
P (  7/31 t )  = P( 71 t )  = sin2(&). 

If we denote the corresponding probability amplitudes as P (  t )  = I x (  ? ) I 2 ,  then we notice 
that 

On the other hand, since at t = 0 the methyl group is localised in the well centred at 
yc = - 7 / 3 ,  we can imagine, within the framework of quasiclassical approximation, 
that during unit time, the CH3 group executing classical torsional oscillations, 
approaches each classical turning point corresponding to energy Eo,  a number wo/2n 
of times. Therefore we can also write 

where 

I T (  Eo)I = exp( - I dy[ZJ( V - 
- Y o  
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is the familar WKB amplitude for barrier transmission. Comparing the two expressions 
we recover the result (8). 
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